

    
      
          
            
  
scikit-uplift

scikit-uplift (sklift) is a Python module for basic approaches of uplift modeling built on top of scikit-learn.

Uplift prediction aims to estimate the causal impact of a treatment at the individual level.

More about uplift modelling problem read in russian on habr.com: Part 1 [https://habr.com/ru/company/ru_mts/blog/485980/] and Part 2 [https://habr.com/ru/company/ru_mts/blog/485976/].


Features


	Comfortable and intuitive style of modelling like scikit-learn;


	Applying any estimator adheres to scikit-learn conventions;


	All approaches can be used in sklearn.pipeline (see example (EN [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb] [image: Open In Colab3] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb], RU [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb] [image: Open In Colab4] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb]))


	Almost all implemented approaches solve both the problem of classification and regression;


	A lot of metrics (Such as Area Under Uplift Curve or Area Under Qini Curve) are implemented to evaluate your uplift model;


	Useful graphs for analyzing the built model.




The package currently supports the following methods:


	Solo Model (aka Treatment Dummy) approach


	Class Transformation (aka Class Variable Transformation or Revert Label) approach


	Two Models (aka naïve approach, or difference score method, or double classifier approach) approach, including Dependent Data Representation




And the following metrics:


	Uplift@k


	Area Under Uplift Curve


	Area Under Qini Curve







Project info


	GitHub repository: https://github.com/maks-sh/scikit-uplift


	Github examples: https://github.com/maks-sh/scikit-uplift/tree/master/notebooks


	License: MIT
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Installation

Install the package by the following command from PyPI [https://pypi.org/project/scikit-uplift/]:

pip install scikit-uplift





Or install from source [https://github.com/maks-sh/scikit-uplift]:

git clone https://github.com/maks-sh/scikit-uplift.git
cd scikit-uplift
python setup.py install









          

      

      

    

  

    
      
          
            
  
Quick Start

See the RetailHero tutorial notebook (EN [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb] [image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb], RU [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb] [image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]) for details.

Train and predict your uplift model

# import approaches
from sklift.models import SoloModel, ClassTransformation, TwoModels
# import any estimator adheres to scikit-learn conventions.
from catboost import CatBoostClassifier

# define approach
sm = SoloModel(CatBoostClassifier(verbose=100, random_state=777))
# fit model
sm = sm.fit(X_train, y_train, treat_train, estimator_fit_params={{'plot': True})

# predict uplift
uplift_sm = sm.predict(X_val)





Evaluate your uplift model

# import metrics to evaluate your model
from sklift.metrics import qini_auc_score, uplift_auc_score, uplift_at_k
# Uplift@30%
sm_uplift_at_k = uplift_at_k(y_true=y_val, uplift=uplift_sm, treatment=treat_val, k=0.3)
# Area Under Qini Curve
sm_qini_auc_score = qini_auc_score(y_true=y_val, uplift=uplift_sm, treatment=treat_val)
# Area Under Uplift Curve
sm_uplift_auc_score = uplift_auc_score(y_true=y_val, uplift=uplift_sm, treatment=treat_val)





Vizualize the results

# import vizualisation tools
from sklift.viz import plot_uplift_preds, plot_uplift_qini_curves

# get conditional predictions (probabilities) of performing a target action
# with interaction for each object
sm_trmnt_preds = sm.trmnt_preds_
# get conditional predictions (probabilities) of performing a target action
# without interaction for each object
sm_ctrl_preds = sm.ctrl_preds_

# draw probability distributions and their difference (uplift)
plot_uplift_preds(trmnt_preds=sm_trmnt_preds, ctrl_preds=sm_ctrl_preds);
# draw Uplift and Qini curves
plot_uplift_qini_curves(y_true=y_val, uplift=uplift_sm, treatment=treat_val);





[image: Probabilities Histogram, Uplift anf Qini curves]
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Models (sklift.models)


1. Approaches with the same model


1.1 One model with treatment as feature

The simplest and most intuitive solution: the model is trained on union of two groups, with the binary
communication flag acting as an additional feature. Each object from the test sample is scored twice:
with the communication flag equal to 1 and equal to 0. Subtracting the probabilities for each observation,
we get the required uplift.

[image: Solo model]

	
class sklift.models.models.SoloModel(estimator)

	aka Treatment Dummy approach, or Single model approach, or S-Learner.

Fit solo model on whole dataset with ‘treatment’ as an additional feature.

For each test example calculate predictions on new set twice:
with treatment == ‘1’ and with treatment == ‘0’.
After that calculate uplift as a delta between these predictions.

Return delta of predictions for each example.

See more details about SoloModel in documentation [https://scikit-uplift.readthedocs.io/en/latest/api/models.html#one-model-with-treatment-as-feature].


	Parameters

	estimator (estimator object implementing 'fit') – The object to use to fit the data.






	
trmnt_preds_

	Estimator predictions on samples when treatment.


	Type

	array-like, shape (n_samples, )










	
ctrl_preds_

	Estimator predictions on samples when control.


	Type

	array-like, shape (n_samples, )









Example:

# import approach
from sklift.models import SoloModel
# import any estimator adheres to scikit-learn conventions
from catboost import CatBoostClassifier


sm = SoloModel(CatBoostClassifier(verbose=100, random_state=777))  # define approach
sm = sm.fit(X_train, y_train, treat_train, estimator_fit_params={{'plot': True})  # fit the model
uplift_sm = sm.predict(X_val)  # predict uplift





References

Lo, Victor. (2002). The True Lift Model - A Novel Data Mining Approach to Response Modeling
in Database Marketing. SIGKDD Explorations. 4. 78-86.


	
fit(X, y, treatment, estimator_fit_params=None)

	Fit the model according to the given training data.

For each test example calculate predictions on new set twice: by the first and second models.
After that calculate uplift as a delta between these predictions.

Return delta of predictions for each example.


	Parameters

	
	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of
samples and n_features is the number of features.


	y (array-like, shape (n_samples,)) – Target vector relative to X.


	treatment (array-like, shape (n_samples,)) – Binary treatment vector relative to X.


	estimator_fit_params (dict, optional) – Parameters to pass to the fit method of the estimator.






	Returns

	self



	Return type

	object










	
predict(X)

	Perform uplift on samples in X.


	Parameters

	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Returns

	uplift



	Return type

	array (shape (n_samples,))
















1.2 Class Transformation


Warning

This approach is only suitable for classification problem



Quite an interesting and mathematically confirmed approach to the construction of the model, presented back in 2012.
The method is to predict a slightly changed target:


\[z_i = y_i * w_i + (1 - y_i) * (1 - w_i), где\]


	\(z_i\) - new target for \(i\) customer;


	\(y_i\) - old target \(i\) customer;


	\(w_i\) - treatment flag \(i\) customer.




In other words, the new class is 1 if we know that on a particular observation, the result in the interaction
would be as good as in the control group if we could know the result in both groups:


\[\begin{split}z_i = \begin{cases}
    1, & \mbox{if } w_i = 1 \mbox{ and } y_i = 1 \\
    1, & \mbox{if } w_i = 0 \mbox{ and } y_i = 0 \\
    0, & \mbox{otherwise}
   \end{cases}\end{split}\]

Let’s describe in more detail what is the probability of a new target variable:


\[\begin{split}P(Z=1|X_1, ..., X_m) = \\
= P(Z=1|X_1, ..., X_m, W = 1) * P(W = 1|X_1, ..., X_m, ) + \\
+ P(Z=1|X_1, ..., X_m, W = 0) * P(W = 0|X_1, ..., X_m, ) = \\
= P(Y=1|X_1, ..., X_m, W = 1) * P(W = 1|X_1, ..., X_m, ) + \\
+ P(Y=0|X_1, ..., X_m, W = 0) * P(W = 0|X_1, ..., X_m, ).\end{split}\]

We assume that \(W\) does not depend on the attributes of \(X_1, ..., X_m\), because otherwise the experiment
design is not very well designed. Taking this, we have: \(P(W | X_1, ..., X_m, ) = P(W)\) and


\[\begin{split}P(Z=1|X_1, ..., X_m) = \\
= P^T(Y=1|X_1, ..., X_m) * P(W = 1) + \\
+ P^C(Y=0|X_1, ..., X_m) * P(W = 0).\end{split}\]

Also assume that \(P(W = 1) = P(W = 0) = \frac{1}{2}\), i.e. during the experiment, the control and treatment groups
were divided in equal proportions. Then we get the following:


\[\begin{split}P(Z=1|X_1, ..., X_m) = \\
= P^T(Y=1|X_1, ..., X_m) * \frac{1}{2} + P^C(Y=0|X_1, ..., X_m) *\frac{1}{2} \Rightarrow \\
\Rightarrow 2 * P(Z=1|X_1, ..., X_m) = \\
= P^T(Y=1|X_1, ..., X_m) + P^C(Y=0|X_1, ..., X_m) = \\
= P^T(Y=1|X_1, ..., X_m) + 1 - P^C(Y=1|X_1, ..., X_m) \Rightarrow \\
\Rightarrow P^T(Y=1|X_1, ..., X_m) - P^C(Y=1|X_1, ..., X_m) = \\
 = UPLIFT = 2 * P(Z=1|X_1, ..., X_m) - 1\end{split}\]

Thus, by doubling the forecast of the new target and subtracting one from it, we get the value of the uplift itself,
i.e.


\[UPLIFT = 2 * P(Z=1) - 1\]

Based on the assumption described above: \(P(W = 1) = P(W = 0) = \frac{1}{2}\), this approach should be used
only in cases where the number of clients with whom we have communicated is equal to the number of clients with
whom there was no communication.


	
class sklift.models.models.ClassTransformation(estimator)

	aka Class Variable Transformation or Revert Label approach.

Redefine target variable, which indicates that treatment make some impact on target or
did target is negative without treatment.

Z = Y * W + (1 - Y)(1 - W),

where Y - target, W - communication flag.

Then, Uplift ~ 2 * (Z == 1) - 1

Returns only uplift predictions.

See more details about ClassTransformation in documentation [https://scikit-uplift.readthedocs.io/en/latest/api/models.html#class-transformation].


	Parameters

	estimator (estimator object implementing 'fit') – The object to use to fit the data.





Example:

# import approach
from sklift.models import ClassTransformation
# import any estimator adheres to scikit-learn conventions
from catboost import CatBoostClassifier


ct = ClassTransformation(CatBoostClassifier(verbose=100, random_state=777))  # define approach
ct = ct.fit(X_train, y_train, treat_train, estimator_fit_params={{'plot': True})  # fit the model
uplift_ct = ct.predict(X_val)  # predict uplift





References

Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data.
ICML Workshop on Clinical Data Analysis, 2012.


	
fit(X, y, treatment, estimator_fit_params=None)

	Fit the model according to the given training data.


	Parameters

	
	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples and
n_features is the number of features.


	y (array-like, shape (n_samples,)) – Target vector relative to X.


	treatment (array-like, shape (n_samples,)) – Binary treatment vector relative to X.


	estimator_fit_params (dict, optional) – Parameters to pass to the fit method of the estimator.






	Returns

	self



	Return type

	object










	
predict(X)

	Perform uplift on samples in X.


	Parameters

	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Returns

	uplift



	Return type

	array (shape (n_samples,))


















2. Approaches with two models

The two-model approach can be found in almost any uplift modeling work, and is often used as a baseline.
However, the use of two models can lead to some unpleasant consequences: if the training will be used fundamentally
different models or the nature of the data of the test and control groups will be very different,
then the returned models will not be comparable with each other. As a result, the calculation of the uplift will
not be completely correct. To avoid this effect, it is necessary to calibrate the models so that their scores can be
interpolated as probabilities. Calibration of model probabilities is well described in the scikit-learn documentation [https://scikit-learn.org/stable/modules/calibration.html].


2.1 Two independent models


Hint

In sklift this approach corresponds to the TwoModels class and the vanilla method.



As the name implies, the approach is to model the conditional probabilities of the treatment and control groups
separately. The articles argue that this approach is rather weak, since both models focus on predicting the result
separately and can therefore skip the “weaker” differences in the samples.

[image: Two independent models vanila]



2.2 Two dependent models

The dependent data representation approach is based on the classifier chain method originally developed
for multi-class classification problems. The idea is that if there are \(L\) different labels, you can build
\(L\) different classifiers, each of which solves the problem of binary classification and in the learning process,
each subsequent classifier uses the predictions of the previous ones as additional features.
The authors of this method proposed to use the same idea to solve the problem of uplift modeling in two stages.


Hint

In sklift this approach corresponds to the TwoModels class and the ddr_control method.



At the beginning we train the classifier based on control data:


\[P^C = P(Y=1| X, W = 0),\]

then we will perform the \(P_C\) predictions as a new feature for training the second classifier on test data,
thus effectively introducing a dependency between the two data sets:


\[P^T = P(Y=1| X, P_C(X), W = 1)\]

To get the uplift for each observation, calculate the difference:


\[uplift(x_i) = P^T (x_i, P_C(x_i)) - P^C(x_i)\]

Intuitively, the second classifier studies the difference between the expected result in the test and the control, i.e.
the uplift itself.

[image: Two independent models dependent data representation control]
Similarly, you can first train the \(P_T\) classifier and then use its predictions as a trait for
the \(P_C\) classifier.


Hint

In sklift this approach corresponds to the TwoModels class and the ddr_treatment method.




	
class sklift.models.models.TwoModels(estimator_trmnt, estimator_ctrl, method='vanilla')

	aka naïve approach, or difference score method, or double classifier approach.

Fit two separate models: on the treatment data and on the control data.

See more details about TwoModels in documentation [https://scikit-uplift.readthedocs.io/en/latest/api/models.html#one-model-with-treatment-as-feature].


	Parameters

	
	estimator_trmnt (estimator object implementing 'fit') – The object to use to fit the treatment data.


	estimator_ctrl (estimator object implementing 'fit') – The object to use to fit the control data.


	method (string, 'vanilla', 'ddr_control' or 'ddr_treatment', default='vanilla') – Specifies the approach:


	
	'vanilla':

	Two independent models;







	
	'ddr_control':

	Dependent data representation (First train control estimator).







	
	'ddr_treatment':

	Dependent data representation (First train treatment estimator).



















	
trmnt_preds_

	Estimator predictions on samples when treatment.


	Type

	array-like, shape (n_samples, )










	
ctrl_preds_

	Estimator predictions on samples when control.


	Type

	array-like, shape (n_samples, )









Example:

# import approach
from sklift.models import TwoModels
# import any estimator adheres to scikit-learn conventions
from catboost import CatBoostClassifier


estimator_trmnt = CatBoostClassifier(silent=True, thread_count=2, random_state=42)
estimator_ctrl = CatBoostClassifier(silent=True, thread_count=2, random_state=42)

# define approach
tm_ctrl = TwoModels(
    estimator_trmnt=estimator_trmnt,
    estimator_ctrl=estimator_ctrl,
    method='ddr_control'
)

# fit the models
tm_ctrl = tm_ctrl.fit(
    X_train, y_train, treat_train,
    estimator_trmnt_fit_params={'cat_features': cat_features},
    estimator_ctrl_fit_params={'cat_features': cat_features}
)
uplift_tm_ctrl = tm_ctrl.predict(X_val)  # predict uplift






	References

	Betlei, Artem & Diemert, Eustache & Amini, Massih-Reza. (2018).
Uplift Prediction with Dependent Feature Representation in Imbalanced Treatment and Control Conditions:
25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018,
Proceedings, Part V. 10.1007/978-3-030-04221-9_5.

Zhao, Yan & Fang, Xiao & Simchi-Levi, David. (2017).
Uplift Modeling with Multiple Treatments and General Response Types.
10.1137/1.9781611974973.66.






	
fit(X, y, treatment, estimator_trmnt_fit_params=None, estimator_ctrl_fit_params=None)

	Fit the model according to the given training data.

For each test example calculate predictions on new set twice: by the first and second models.
After that calculate uplift as a delta between these predictions.

Return delta of predictions for each example.


	Parameters

	
	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number
of samples and n_features is the number of features.


	y (array-like, shape (n_samples,)) – Target vector relative to X.


	treatment (array-like, shape (n_samples,)) – Binary treatment vector relative to X.


	estimator_trmnt_fit_params (dict, optional) – Parameters to pass to the fit method
of the treatment estimator.


	estimator_ctrl_fit_params (dict, optional) – Parameters to pass to the fit method
of the control estimator.






	Returns

	self



	Return type

	object










	
predict(X)

	Perform uplift on samples in X.


	Parameters

	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Returns

	uplift



	Return type

	array (shape (n_samples,))





















          

      

      

    

  

    
      
          
            
  
Metrics (sklift.metrics)


	
sklift.metrics.metrics.auqc(y_true, uplift, treatment)

	Compute Area Under the Qini Curve (aka Qini coefficient) from prediction scores.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Area Under the Qini Curve.



	Return type

	float






Warning

Metric auqc was renamed to qini_auc_score()
in version 0.1.0 and will be removed in 0.2.0








	
sklift.metrics.metrics.auuc(y_true, uplift, treatment)

	Compute Area Under the Uplift Curve from prediction scores.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Area Under the Uplift Curve.



	Return type

	float






Warning

Metric auuc was renamed to uplift_auc_score()
in version 0.1.0 and will be removed in 0.2.0








	
sklift.metrics.metrics.qini_auc_score(y_true, uplift, treatment)

	Compute Area Under the Qini Curve (aka Qini coefficient) from prediction scores.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Area Under the Qini Curve.



	Return type

	float










	
sklift.metrics.metrics.qini_curve(y_true, uplift, treatment)

	Compute Qini curve.

This is a general function, given points on a curve. For computing the
area under the Qini Curve, see qini_auc_score().


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])






See also

qini_auc_score(): Compute the area under the Qini curve.

plot_uplift_qini_curves(): Plot Uplift and Qini curves.








	
sklift.metrics.metrics.response_rate_by_percentile(y_true, uplift, treatment, group, strategy, bins=10)

	Compute response rate and its variance at each percentile.

Response rate ia a target mean in the group.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	group (string, ['treatment', 'control']) – Group type for computing response rate: treatment or control.


	
	'treatment':

	Values equal 1 in the treatment column.







	
	'control':

	Values equal 0 in the treatment column.












	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy.


	
	'overall':

	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':

	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated.












	bins (int) – Determines а number of bins (and а relative percentile) in the test data. Default is 10.






	Returns

	Response rate at each percentile for control or treatment group
array: Variance of the response rate at each percentile



	Return type

	array










	
sklift.metrics.metrics.treatment_balance_curve(uplift, treatment, winsize)

	Compute the treatment balance curve: proportion of treatment group in the ordered predictions.


	Parameters

	
	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	winsize (int) – Size of the sliding window for calculating the balance between treatment and control.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])










	
sklift.metrics.metrics.uplift_at_k(y_true, uplift, treatment, strategy, k=0.3)

	Compute uplift at first k percentage of the total sample.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	k (float or int) – If float, should be between 0.0 and 1.0 and represent the proportion of the dataset
to include in the computation of uplift. If int, represents the absolute number of samples.


	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy.


	
	'overall':

	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':

	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated.




















Changed in version 0.1.0: 	Add supporting absolute values for k parameter


	Add parameter strategy







	Returns

	Uplift score at first k observations of the total sample.



	Return type

	float










	
sklift.metrics.metrics.uplift_auc_score(y_true, uplift, treatment)

	Compute Area Under the Uplift Curve from prediction scores.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Area Under the Uplift Curve.



	Return type

	float










	
sklift.metrics.metrics.uplift_curve(y_true, uplift, treatment)

	Compute Uplift curve

This is a general function, given points on a curve.  For computing the
area under the Uplift Curve, see uplift_auc_score().


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])






See also

uplift_auc_score(): Compute the area under the Uplift curve.

plot_uplift_qini_curves(): Plot Uplift and Qini curves.











          

      

      

    

  

    
      
          
            
  
Visualization (sklift.viz)


	
sklift.viz.base.plot_treatment_balance_curve(uplift, treatment, random=True, winsize=0.1)

	Plot Treatment Balance curve.


	Parameters

	
	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	random (bool, default True) – Draw a random curve.


	winsize (float, default 0.1) – Size of the sliding window to apply. Should be between 0 and 1, extremes excluded.






	Returns

	Object that stores computed values.










	
sklift.viz.base.plot_uplift_by_percentile(y_true, uplift, treatment, strategy, kind='line', bins=10)

	Plot uplift score, treatment response rate and control response rate at each percentile.

Treatment response rate ia a target mean in the treatment group.
Control response rate is a target mean in the control group.
Uplift score is a difference between treatment response rate and control response rate.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy.


	
	'overall':

	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':

	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated.












	kind (string, ['line', 'bar']) – The type of plot to draw. Default is ‘line’.


	
	'line':

	Generates a line plot.







	
	'bar':

	Generates a traditional bar-style plot.












	bins (int) – Determines а number of bins (and а relative percentile) in the test data. Default is 10.






	Returns

	Object that stores computed values.










	
sklift.viz.base.plot_uplift_preds(trmnt_preds, ctrl_preds, log=False, bins=100)

	Plot histograms of treatment, control and uplift predictions.


	Parameters

	
	trmnt_preds (1d array-like) – Predictions for all observations if they are treatment.


	ctrl_preds (1d array-like) – Predictions for all observations if they are control.


	log (bool, default False) – Logarithm of source samples.


	bins (integer or sequence, default 100) – Number of histogram bins to be used.
If an integer is given, bins + 1 bin edges are calculated and returned.
If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin.
In this case, bins is returned unmodified.






	Returns

	Object that stores computed values.










	
sklift.viz.base.plot_uplift_qini_curves(y_true, uplift, treatment, random=True, perfect=False)

	Plot Uplift and Qini curves.


	Parameters

	
	y_true (1d array-like) – Ground truth (correct) labels.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	random (bool, default True) – Draw a random curve.


	perfect (bool, default False) – Draw a perfect curve.






	Returns

	Object that stores computed values.













          

      

      

    

  

    
      
          
            
  
Tutorials


Basic

It is better to start scikit-uplift from the basic tutorials.


	
	The overview of the basic approaches to solving the Uplift Modeling problem [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	
	In English: nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb] | github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]   [image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]


	In Russian: nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb] | github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]   [image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]










	
	Example of usage model from sklift.models in sklearn.pipeline [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]

	
	In English: nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb] | github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]   [image: Open In Colab3] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]


	In Russian: nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb] | github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb]   [image: Open In Colab4] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb]


















          

      

      

    

  

    
      
          
            
  
Release History


Legend for changelogs


	🔥 something big that you couldn’t do before.


	💥 something that you couldn’t do before.


	📝 a miscellaneous minor improvement.


	🔨 something that previously didn’t work as documentated – or according to reasonable expectations – should now work.


	❗️ you will need to change your code to have the same effect in the future; or a feature will be removed in the future.







Version 0.1.2


sklift.models [https://scikit-uplift.readthedocs.io/en/latest/api/models.html]


	🔨 Fix bugs in TwoModels [https://scikit-uplift.readthedocs.io/en/latest/api/models.html#sklift.models.models.TwoModels] for regression problem.


	📝 Minor code refactoring.







sklift.metrics [https://scikit-uplift.readthedocs.io/en/latest/api/metrics.html]


	📝 Minor code refactoring.







sklift.viz [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html]


	💥 Add bar plot in plot_uplift_by_percentile [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.viz.base.plot_uplift_by_percentile] by @ElisovaIra [https://github.com/ElisovaIra].


	🔨 Fix bug in plot_uplift_by_percentile [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.viz.base.plot_uplift_by_percentile].


	📝 Minor code refactoring.









Version 0.1.1


sklift.viz [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html]


	💥 Add plot_uplift_by_percentile [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.viz.base.plot_uplift_by_percentile] by @ElisovaIra [https://github.com/ElisovaIra].


	🔨 Fix bug with import plot_treatment_balance_curve [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.viz.base.plot_treatment_balance_curve].







sklift.metrics [https://scikit-uplift.readthedocs.io/en/latest/api/metrics.html]


	💥 Add response_rate_by_percentile [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.metrics.metrics.response_rate_by_percentile] by @ElisovaIra [https://github.com/ElisovaIra].


	🔨 Fix bug with import uplift_auc_score [https://scikit-uplift.readthedocs.io/en/latest/api/metrics.html#sklift.metrics.metrics.uplift_auc_score] and qini_auc_score [https://scikit-uplift.readthedocs.io/en/latest/metrics.html#sklift.metrics.metrics.qini_auc_score].


	📝 Fix typos in docstrings.







Miscellaneous


	💥 Add tutorial “Example of usage model from sklift.models in sklearn.pipeline” [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb].


	📝 Add link to Release History in main Readme.md.









Version 0.1.0


sklift.models [https://scikit-uplift.readthedocs.io/en/latest/api/models.html]


	📝 Fix typo in TwoModels [https://scikit-uplift.readthedocs.io/en/latest/api/models.html#sklift.models.models.TwoModels] docstring by @spiaz [https://github.com/spiaz].


	📝 Improve docstrings and add references to all approaches.







sklift.metrics [https://scikit-uplift.readthedocs.io/en/latest/api/metrics.html]


	💥 Add treatment_balance_curve [https://scikit-uplift.readthedocs.io/en/latest/api/metrics.html#sklift.metrics.metrics.treatment_balance_curve] by @spiaz [https://github.com/spiaz].


	❗️ The metrics auuc and auqc are now respectively renamed to uplift_auc_score [https://scikit-uplift.readthedocs.io/en/latest/api/metrics.html#sklift.metrics.metrics.uplift_auc_score] and qini_auc_score [https://scikit-uplift.readthedocs.io/en/latest/metrics.html#sklift.metrics.metrics.qini_auc_score]. So, auuc and auqc will be removed in 0.2.0.


	❗️ Add a new parameter startegy in uplift_at_k [https://scikit-uplift.readthedocs.io/en/latest/metrics.html#sklift.metrics.metrics.uplift_at_k].







sklift.viz [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html]


	💥 Add plot_treatment_balance_curve [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.viz.base.plot_treatment_balance_curve] by @spiaz [https://github.com/spiaz].


	📝 fix typo in plot_uplift_qini_curves [https://scikit-uplift.readthedocs.io/en/latest/api/viz.html#sklift.viz.base.plot_uplift_qini_curves] by @spiaz [https://github.com/spiaz].







Miscellaneous


	❗️ Remove sklift.preprocess submodule.


	💥 Add compatibility of tutorials with colab and add colab buttons by @ElMaxuno [https://github.com/ElMaxuno].


	💥 Add Changelog.


	📝 Change the documentation structure. Add next pages: Tutorials [https://scikit-uplift.readthedocs.io/en/latest/tutorials.html], Release History [https://scikit-uplift.readthedocs.io/en/latest/changelog.html] and Hall of fame [https://scikit-uplift.readthedocs.io/en/latest/hall_of_fame.html].












          

      

      

    

  

    
      
          
            
  
Hall of Fame

Here are the links to the competitions, names of the winners and to their solutions, where scikit-uplift was used.


X5 RetailHero Uplift Modeling contest [https://retailhero.ai/c/uplift_modeling/overview]


	
	Kirill Liksakov [https://github.com/kirrlix1994]

	solution [https://github.com/kirrlix1994/Retail_hero]
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