

    
      
          
            
  
scikit-uplift

scikit-uplift (sklift) is an uplift modeling python package that provides fast sklearn-style models implementation, evaluation metrics and visualization tools.

The main idea is to provide easy-to-use and fast python package for uplift modeling. It delivers the model interface with the familiar scikit-learn API. One can use any popular estimator (for instance, from the Catboost library).

Uplift modeling estimates a causal effect of treatment and uses it to effectively target customers that are most likely to respond to a marketing campaign.

Use cases for uplift modeling:


	Target customers in the marketing campaign. Quite useful in promotion of some popular product where there is a big part of customers who make a target action by themself without any influence. By modeling uplift you can find customers who are likely to make the target action (for instance, install an app) only when treated (for instance, received a push).


	Combine a churn model and an uplift model to offer some bonus to a group of customers who are likely to churn.


	Select a tiny group of customers in the campaign where a price per customer is high.




Read more about uplift modeling problem in User Guide [https://www.uplift-modeling.com/en/latest/user_guide/index.html],

Articles in russian on habr.com: Part 1 [https://habr.com/ru/company/ru_mts/blog/485980/] ,
Part 2 [https://habr.com/ru/company/ru_mts/blog/485976/]
and Part 3 [https://habr.com/ru/company/ru_mts/blog/538934/].


Features


	Сomfortable and intuitive scikit-learn-like API;


	Applying any estimator compatible with scikit-learn (e.g. Xgboost, LightGBM, Catboost, etc.);


	All approaches can be used in sklearn.pipeline. See the example of usage: [image: Open In Colab3] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb];


	Almost all implemented approaches solve classification and regression problem;


	More uplift metrics that you have ever seen in one place! Include brilliants like  Area Under Uplift Curve (AUUC) or Area Under Qini Curve (Qini coefficient) with ideal cases;


	Nice and useful viz for analyzing a performance model.




The package currently supports the following methods:


	Solo Model (aka Treatment Dummy and Treatment interaction) approach


	Class Transformation (aka Class Variable Transformation or Revert Label) approach


	Two Models (aka naïve approach, or difference score method, or double classifier approach) approach, including Dependent Data Representation




And the following metrics:


	Uplift@k


	Area Under Uplift Curve


	Area Under Qini Curve


	Weighted average uplift







Project info


	GitHub repository: https://github.com/maks-sh/scikit-uplift


	Github examples: https://github.com/maks-sh/scikit-uplift/tree/master/notebooks


	Documentation: https://www.uplift-modeling.com/en/latest/index.html


	Contributing guide: https://www.uplift-modeling.com/en/latest/contributing.html


	License: MIT [https://github.com/maks-sh/scikit-uplift/blob/master/LICENSE]







Community

Sklift is being actively maintained and welcomes new contributors of all experience levels.


	Please see our Contributing Guide [https://www.uplift-modeling.com/en/latest/contributing.html] for more details.


	By participating in this project, you agree to abide by its Code of Conduct [https://github.com/maks-sh/scikit-uplift/blob/master/.github/CODE_OF_CONDUCT.md].




If you have any questions, please contact us at team@uplift-modeling.com
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Installation

Install the package by the following command from PyPI [https://pypi.org/project/scikit-uplift/]:

pip install scikit-uplift





Or install from source [https://github.com/maks-sh/scikit-uplift]:

git clone https://github.com/maks-sh/scikit-uplift.git
cd scikit-uplift
python setup.py install









            

          

      

      

    

  

    
      
          
            
  
Quick Start

See the RetailHero tutorial notebook (EN [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb] [image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb], RU [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb] [image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]) for details.


Train and predict your uplift model

Use the intuitive python API to train uplift models with sklift.models [https://www.uplift-modeling.com/en/latest/api/models/index.html].

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	# import approaches
from sklift.models import SoloModel, ClassTransformation, TwoModels
# import any estimator adheres to scikit-learn conventions.
from catboost import CatBoostClassifier


# define models
treatment_model = CatBoostClassifier(iterations=50, thread_count=3,
                                     random_state=42, silent=True)
control_model = CatBoostClassifier(iterations=50, thread_count=3,
                                   random_state=42, silent=True)

# define approach
tm = TwoModels(treatment_model, control_model, method='vanilla')
# fit model
tm = tm.fit(X_train, y_train, treat_train)

# predict uplift
uplift_preds = tm.predict(X_val)










Evaluate your uplift model

Uplift model evaluation metrics are available in sklift.metrics [https://www.uplift-modeling.com/en/latest/api/metrics/index.html].

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	# import metrics to evaluate your model
from sklift.metrics import (
    uplift_at_k, uplift_auc_score, qini_auc_score, weighted_average_uplift
)


# Uplift@30%
tm_uplift_at_k = uplift_at_k(y_true=y_val, uplift=uplift_preds,
                             treatment=treat_val,
                             strategy='overall', k=0.3)

# Area Under Qini Curve
tm_qini_auc = qini_auc_score(y_true=y_val, uplift=uplift_preds,
                             treatment=treat_val)

# Area Under Uplift Curve
tm_uplift_auc = uplift_auc_score(y_true=y_val, uplift=uplift_preds,
                                 treatment=treat_val)

# Weighted average uplift
tm_wau = weighted_average_uplift(y_true=y_val, uplift=uplift_preds,
                                 treatment=treat_val)










Vizualize the results

Visualize performance metrics with sklift.viz [https://www.uplift-modeling.com/en/latest/api/viz/index.html].

	1
2
3

	from sklift.viz import plot_qini_curve

plot_qini_curve(y_true=y_val, uplift=uplift_preds, treatment=treat_val, negative_effect=True)







[image: Example of model's qini curve, perfect qini curve and random qini curve]
	1
2
3

	from sklift.viz import plot_uplift_curve

plot_uplift_curve(y_true=y_val, uplift=uplift_preds, treatment=treat_val)







[image: Example of model's uplift curve, perfect uplift curve and random uplift curve]
	1
2
3
4

	from sklift.viz import plot_uplift_by_percentile

plot_uplift_by_percentile(y_true=y_val, uplift=uplift_preds,
                          treatment=treat_val, kind='bar')







[image: Uplift by percentile]






            

          

      

      

    

  

    
      
          
            
  
User Guide

[image: Cover of User Guide for uplift modeling and causal inference]
Uplift modeling estimates the effect of communication action on some customer outcomes and gives an opportunity to efficiently target customers which are most likely to respond to a marketing campaign.
It is relatively easy to implement, but surprisingly poorly covered in the machine learning courses and literature.
This guide is going to shed some light on the essentials of causal inference estimating and uplift modeling.
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Uplift vs other models

Companies use various channels to promote a product to a customer: it can be SMS, push notification, chatbot message in social networks, and many others.
There are several ways to use machine learning to select customers for a marketing campaign:

[image: Comparison with other models]

	The Look-alike model (or Positive Unlabeled Learning) evaluates a probability that the customer is going to accomplish a target action. A training dataset contains known positive objects (for instance, users who have installed an app) and random negative objects (a random subset of all other customers who have not installed the app). The model searches for customers who are similar to those who made the target action.


	The Response model evaluates the probability that the customer is going to accomplish the target action if there was a communication (a.k.a treatment). In this case, the training dataset is data collected after some interaction with the customers. In contrast to the first approach, we have confirmed positive and negative observations at our disposal (for instance, the customer who decides to issue a credit card or to decline an offer).


	The Uplift model evaluates the net effect of communication by trying to select only those customers who are going to perform the target action only when there is some advertising exposure presenting to them. The model predicts a difference between the customer’s behavior when there is a treatment (communication) and when there is no treatment (no communication).




When should we use uplift modeling?

Uplift modeling is used when the customer’s target action is likely to happen without any communication.
For instance, we want to promote a popular product but we don’t want to spend our marketing budget on customers who will buy the product anyway with or without communication.
If the product is not popular and it has to be promoted to be bought, then a task turns to the response modeling task.


References

1️⃣ Radcliffe, N.J. (2007). Using control groups to target on predicted lift: Building and assessing uplift model. Direct Market J Direct Market Assoc Anal Council, 1:14–21, 2007.







            

          

      

      

    

  

    
      
          
            
  
Causal Inference: Basics

In a perfect world, we want to calculate a difference in a person’s reaction received communication, and the reaction without receiving any communication.
But there is a problem: we can not make a communication (send an e-mail) and do not make a communication (no e-mail) at the same time.

[image: Joke about Schrodinger's cat]
Denoting \(Y_i^1\) person \(i\)’s outcome when receives the treatment (a presence of the communication) and \(Y_i^0\) \(i\)’s outcome when he receives no treatment (control, no communication), the causal effect \(\tau_i\) of the treatment vis-a-vis no treatment is given by:


\[\tau_i = Y_i^1 - Y_i^0\]

Researchers are typically interested in estimating the Conditional Average Treatment Effect (CATE), that is, the expected causal effect of the treatment for a subgroup in the population:


\[CATE = E[Y_i^1 \vert X_i] - E[Y_i^0 \vert X_i]\]

Where \(X_i\) - features vector describing \(i\)-th person.

We can observe neither causal effect nor CATE for the \(i\)-th object, and, accordingly, we can’t optimize it.
But we can estimate CATE or uplift of an object:


\[\textbf{uplift} = \widehat{CATE} = E[Y_i \vert X_i = x, W_i = 1] - E[Y_i \vert X_i = x, W_i = 0]\]

Where:


	\(W_i \in {0, 1}\) - a binary variable: 1 if person \(i\) receives the treatment group, and 0 if person \(i\) receives no treatment control group;


	\(Y_i\) - person \(i\)’s observed outcome, which is equal:





\[\begin{split}Y_i = W_i * Y_i^1 + (1 - W_i) * Y_i^0 = \
\begin{cases}
    Y_i^1, & \mbox{if } W_i = 1 \\
    Y_i^0, & \mbox{if } W_i = 0 \\
\end{cases}\end{split}\]

This won’t identify the CATE unless one is willing to assume that \(W_i\) is independent of \(Y_i^1\) and \(Y_i^0\) conditional on \(X_i\). This assumption is the so-called Unconfoundedness Assumption or the Conditional Independence Assumption (CIA) found in the social sciences and medical literature.
This assumption holds true when treatment assignment is random conditional on \(X_i\).
Briefly, this can be written as:


\[CIA : \{Y_i^0, Y_i^1\} \perp \!\!\! \perp W_i \vert X_i\]

Also, introduce additional useful notation.
Let us define the propensity score, \(p(X_i) = P(W_i = 1| X_i)\), i.e. the probability of treatment given \(X_i\).


References

1️⃣ Gutierrez, P., & Gérardy, J. Y. (2017). Causal Inference and Uplift Modelling: A Review of the Literature. In International Conference on Predictive Applications and APIs (pp. 1-13).







            

          

      

      

    

  

    
      
          
            
  
Data collection

We need to evaluate a difference between two events that are mutually exclusive for a particular customer (either we communicate with a person, or we don’t; you can’t do both actions at the same time). This is why there are additional requirements for collecting data when building an uplift model.

There are few additional steps different from a standard data collection procedure. You should run an experiment:


	Randomly divide a representative part of the customer base into a treatment (receiving communication) and a control (receiving no communication) groups;


	Evaluate the marketing experiment for the treatment group.




Data collected from the marketing experiment consists of the customer’s responses to the marketing offer (target).

The only difference between the experiment and the future uplift model’s campaign is a fact that in the first case we choose random customers to make a promotion. In the second case, the choice of a customer to communicate with is based on the predicted value returned by the uplift model. If the marketing campaign significantly differs from the experiment used to collect data, the model will be less accurate.

There is a trick: before running the marketing campaign, it is recommended to randomly subset a small part of the customer base and divide it into a control and a treatment group again, similar to the previous experiment. Using this data, you will not only be able to accurately evaluate the effectiveness of the campaign but also collect additional data for a further model retraining.

[image: Animation: Design of a train data collection experiment for uplift modeling]
It is recommended to configure a development of the uplift model and the campaign launch as an iterative process: each iteration will collect new training data. It should consist of a mix of a random customer subset and customers selected by the model.


References

1️⃣ Verbeke, Wouter & Baesens, Bart & Bravo, Cristián. (2018). Profit Driven Business Analytics: A Practitioner’s Guide to Transforming Big Data into Added Value.







            

          

      

      

    

  

    
      
          
            
  
Types of customers

We can determine 4 types of customers based on a response to treatment:

[image: Classification of customers based on their response to a treatment]

	Do-Not-Disturbs (a.k.a. Sleeping-dogs) have a strong negative response to marketing communication. They are going to purchase if NOT treated and will NOT purchase IF treated. It is not only a wasted marketing budget but also a negative impact. For instance, customers targeted could result in rejecting current products or services. In terms of math: \(W_i = 1, Y_i = 0\) or \(W_i = 0, Y_i = 1\).


	Lost Causes will NOT purchase the product NO MATTER they are contacted or not. The marketing budget in this case is also wasted because it has no effect. In terms of math: \(W_i = 1, Y_i = 0\) or \(W_i = 0, Y_i = 0\).


	Sure Things will purchase ANYWAY no matter they are contacted or not. There is no motivation to spend the budget because it also has no effect. In terms of math: \(W_i = 1, Y_i = 1\) or \(W_i = 0, Y_i = 1\).


	Persuadables will always respond POSITIVE to marketing communication. They are going to purchase ONLY if contacted (or sometimes they purchase MORE or EARLIER only if contacted). This customer’s type should be the only target for the marketing campaign. In terms of math: \(W_i = 0, Y_i = 0\) or \(W_i = 1, Y_i = 1\).




Because we can’t communicate and not communicate with the customer at the same time, we will never be able to observe exactly which type a particular customer belongs to.

Depends on the product characteristics and the customer base structure some types may be absent. In addition, a customer response depends heavily on various characteristics of the campaign, such as a communication channel or a type and a size of the marketing offer. To maximize profit, these parameters should be selected.

Thus, when predicting uplift score and selecting a segment by the highest score, we are trying to find the only one type: persuadables.


References

1️⃣ Kane, K., V. S. Y. Lo, and J. Zheng. Mining for the Truly Responsive Customers and Prospects Using True-Lift Modeling: Comparison of New and Existing Methods. Journal of Marketing Analytics 2 (4): 218–238. 2014.

2️⃣ Verbeke, Wouter & Baesens, Bart & Bravo, Cristián. (2018). Profit Driven Business Analytics: A Practitioner’s Guide to Transforming Big Data into Added Value.







            

          

      

      

    

  

    
      
          
            
  
Models
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Approach classification

Uplift modeling techniques can be grouped into data preprocessing and data processing approaches.

[image: Classification of uplift modeling techniques: data preprocessing and data processing]

Data preprocessing

In the preprocessing approaches, existing out-of-the-box learning methods are used, after pre- or post-processing of the data and outcomes.

A popular and generic data preprocessing approach is the flipped label approach, also called class transformation approach.

Other data preprocessing approaches extend the set of predictor variables to allow for the estimation of uplift. An example is the single model with treatment as feature.




Data processing

In the data processing approaches, new learning methods and methodologies are developed that aim to optimize expected uplift more directly.

Data processing techniques include two categories: indirect and direct estimation approaches.

Indirect estimation approaches include the two-model model approach.

Direct estimation approaches are typically adaptations from decision tree algorithms. The adoptions include modified the splitting criteria and dedicated pruning techniques.




References

1️⃣ Devriendt, Floris, Tias Guns and Wouter Verbeke. “Learning to rank for uplift modeling.” ArXiv abs/2002.05897 (2020): n. pag.







            

          

      

      

    

  

    
      
          
            
  
Single model approaches


Single model with treatment as feature

The most intuitive and simple uplift modeling technique. A training set consists of two groups: treatment samples and control samples. There is also a binary treatment flag added as a feature to the training set. After the model is trained, at the scoring time it is going to be applied twice:
with the treatment flag equals 1 and with the treatment flag equals 0. Subtracting these model’s outcomes for each test sample, we will get an estimate of the uplift.

[image: Solo model dummy method]

Hint

In sklift this approach corresponds to the  SoloModel class and the dummy method.






Treatment interaction

The single model approach has various modifications. For instance, we can update the number of attributes in the training set by adding
the product of each attribute and the treatment flag:

[image: Solo model treatment interaction method]

Hint

In sklift this approach corresponds to the SoloModel class and the treatment_interaction method.






References

1️⃣ Lo, Victor. (2002). The True Lift Model - A Novel Data Mining Approach to Response Modeling in Database Marketing. SIGKDD Explorations. 4. 78-86.




Examples using sklift.models.SoloModel


	The overview of the basic approaches to solving the Uplift Modeling problem












	In English 🇬🇧

	[image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]



	In Russian 🇷🇺

	[image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]












            

          

      

      

    

  

    
      
          
            
  
Class Transformation


Warning

This approach is only suitable for classification problem



Simple yet powerful and mathematically proven uplift modeling method, presented in 2012.
The main idea is to predict a slightly changed target \(Z_i\):


\[Z_i = Y_i \cdot W_i + (1 - Y_i) \cdot (1 - W_i),\]


	\(Z_i\) - a new target for the \(i\) customer;


	\(Y_i\) - a previous target for the \(i\) customer;


	\(W_i\) - treatment flag assigned to the \(i\) customer.




In other words, the new target equals 1 if a response in the treatment group is as good as a response in the control group and equals 0 otherwise:


\[\begin{split}Z_i = \begin{cases}
    1, & \mbox{if } W_i = 1 \mbox{ and } Y_i = 1 \\
    1, & \mbox{if } W_i = 0 \mbox{ and } Y_i = 0 \\
    0, & \mbox{otherwise}
   \end{cases}\end{split}\]

Let’s go deeper and estimate the conditional probability of the target variable:


\[\begin{split}P(Z=1|X = x) = \\
= P(Z=1|X = x, W = 1) \cdot P(W = 1|X = x) + \\
+ P(Z=1|X = x, W = 0) \cdot P(W = 0|X = x) = \\
= P(Y=1|X = x, W = 1) \cdot P(W = 1|X = x) + \\
+ P(Y=0|X = x, W = 0) \cdot P(W = 0|X = x).\end{split}\]

We assume that \(W\) is independent of \(X = x\) by design.
Thus we have: \(P(W | X = x) = P(W)\) and


\[\begin{split}P(Z=1|X = x) = \\
= P^T(Y=1|X = x) \cdot P(W = 1) + \\
+ P^C(Y=0|X = x) \cdot P(W = 0)\end{split}\]

Also, we assume that \(P(W = 1) = P(W = 0) = \frac{1}{2}\), which means that during the experiment the control and the treatment groups
were divided in equal proportions. Then we get the following:


\[ \begin{align}\begin{aligned}\begin{split}P(Z=1|X = x) = \\
= P^T(Y=1|X = x) \cdot \frac{1}{2} + P^C(Y=0|X = x) \cdot \frac{1}{2} \Rightarrow \\\end{split}\\\begin{split}2 \cdot P(Z=1|X = x) = \\
= P^T(Y=1|X = x) + P^C(Y=0|X = x) = \\
= P^T(Y=1|X = x) + 1 - P^C(Y=1|X = x) \Rightarrow \\
\Rightarrow P^T(Y=1|X = x) - P^C(Y=1|X = x) = \\
 = uplift = 2 \cdot P(Z=1|X = x) - 1\end{split}\end{aligned}\end{align} \]

[image: Mem about class transformation approach for uplift modeling]
Thus, by doubling the estimate of the new target \(Z\) and subtracting one we will get an estimation of the uplift:


\[uplift = 2 \cdot P(Z=1) - 1\]

This approach is based on the assumption: \(P(W = 1) = P(W = 0) = \frac{1}{2}\). That is the reason that it has to be used
only in cases where the number of treated customers (communication) is equal to the number of control customers (no communication).


Hint

In sklift this approach corresponds to the ClassTransformation class.




References

1️⃣ Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data. ICML Workshop on Clinical Data Analysis, 2012.




Examples using sklift.models.ClassTransformation


	The overview of the basic approaches to the Uplift Modeling problem












	In English 🇬🇧

	[image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]



	In Russian 🇷🇺

	[image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]







	The 2nd place solution of X5 RetailHero uplift contest by Kirill Liksakov [https://github.com/kirrlix1994]











	In English 🇬🇧

	nbviewer [https://nbviewer.jupyter.org/github/kirrlix1994/Retail_hero/blob/master/Retail_hero_contest_2nd_place_solution.ipynb]

	github [https://github.com/kirrlix1994/Retail_hero]












            

          

      

      

    

  

    
      
          
            
  
Two models approaches

The two models approach can be found in almost every uplift modeling research. It is often used as a baseline model.


Two independent models


Hint

In sklift this approach corresponds to the sklift.models.TwoModels class and the vanilla method.



The main idea is to estimate the conditional probabilities of the treatment and control groups separately.


	Train the first model using the treatment set.


	Train the second model using the control set.


	Inference: subtract the control model scores from the treatment model scores.




[image: Two independent models vanilla]
The main disadvantage of this method is that if the uplift signal is weak, it can be lost since both models focus on predicting an original response, not the uplift.




Two dependent models

The dependent data representation approach is based on the classifier chain method originally developed
for multi-class classification problems. The idea is that if there are \(L\) different labels, you can build
\(L\) different classifiers, each of which solves the problem of binary classification and in the learning process,
each subsequent classifier uses the predictions of the previous ones as additional features.
The authors of this method proposed to use the same idea to solve the problem of uplift modeling in two stages.


Hint

In sklift this approach corresponds to the TwoModels class and the ddr_control method.



At the beginning, we train the classifier based on the control data:


\[P^C = P(Y=1| X, W = 0),\]

Next, we estimate the \(P_C\) predictions and use them as a feature for the second classifier.
It effectively reflects a dependency between treatment and control datasets:


\[P^T = P(Y=1| X, P_C(X), W = 1)\]

To get the uplift for each observation, calculate the difference:


\[uplift(x_i) = P^T (x_i, P_C(x_i)) - P^C(x_i)\]

Intuitively, the second classifier learns the difference between the expected probability in the treatment and the control sets which is
the uplift.

[image: Two independent models dependent data representation control]
Similarly, you can first train the \(P_T\) classifier and then use its predictions as a feature for
the \(P_C\) classifier.


Hint

In sklift this approach corresponds to the TwoModels class and the ddr_treatment method.



There is an important remark about the data nature.
It is important to calibrate the model’s scores into probabilities if treatment and control data have a different nature.
Model calibration techniques are well described in the scikit-learn documentation [https://scikit-learn.org/stable/modules/calibration.html].




References

1️⃣ Betlei, Artem & Diemert, Eustache & Amini, Massih-Reza. (2018). Uplift Prediction with Dependent Feature Representation in Imbalanced Treatment and Control Conditions: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018, Proceedings, Part V. 10.1007/978-3-030-04221-9_5.

2️⃣ Zhao, Yan & Fang, Xiao & Simchi-Levi, David. (2017). Uplift Modeling with Multiple Treatments and General Response Types. 10.1137/1.9781611974973.66.




Examples using sklift.models.TwoModels


	The overview of the basic approaches to solving the Uplift Modeling problem












	In English 🇬🇧

	[image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]



	In Russian 🇷🇺

	[image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]












            

          

      

      

    

  

    
      
          
            
  
API sklift

This is the modules reference of scikit-uplift.



	sklift.models
	sklift.models.SoloModel

	sklift.models.ClassTransformation

	sklift.models.TwoModels





	sklift.metrics
	sklift.metrics.uplift_at_k

	sklift.metrics.uplift_curve

	sklift.metrics.perfect_uplift_curve

	sklift.metrics.uplift_auc_score

	sklift.metrics.qini_curve

	sklift.metrics.perfect_qini_curve

	sklift.metrics.qini_auc_score

	sklift.metrics.weighted_average_uplift

	sklift.metrics.uplift_by_percentile

	sklift.metrics.response_rate_by_percentile

	sklift.metrics.treatment_balance_curve





	sklift.viz
	sklift.viz.plot_uplift_preds

	sklift.viz.plot_qini_curve

	sklift.viz.plot_uplift_curve

	sklift.viz.plot_treatment_balance_curve

	sklift.viz.plot_uplift_by_percentile





	sklift.datasets
	sklift.datasets.clear_data_dir

	sklift.datasets.get_data_dir

	sklift.datasets.fetch_lenta
	Lenta Uplift Modeling Dataset





	sklift.datasets.fetch_x5
	X5 RetailHero Uplift Modeling Dataset





	sklift.datasets.fetch_criteo
	Criteo Uplift Modeling Dataset





	sklift.datasets.fetch_hillstrom
	Kevin Hillstrom Dataset: MineThatData

















            

          

      

      

    

  

    
      
          
            
  
sklift.models

See Models section of the User Guide for further details.



	sklift.models.SoloModel

	sklift.models.ClassTransformation

	sklift.models.TwoModels









            

          

      

      

    

  

    
      
          
            
  
sklift.models.SoloModel


	
class sklift.models.models.SoloModel(estimator, method='dummy')

	aka Treatment Dummy approach, or Single model approach, or S-Learner.

Fit solo model on whole dataset with ‘treatment’ as an additional feature.

Each object from the test sample is scored twice: with the communication flag equal to 1 and equal to 0.
Subtracting the probabilities for each observation, we get the uplift.

Return delta of predictions for each example.

Read more in the User Guide.


	Parameters

	
	estimator (estimator object implementing 'fit') – The object to use to fit the data.


	method (string, ’dummy’ or ’treatment_interaction’, default='dummy') – Specifies the approach:


	
	'dummy':
	Single model;







	
	'treatment_interaction':
	Single model including treatment interactions.



















	
trmnt_preds_

	Estimator predictions on samples when treatment.


	Type

	array-like, shape (n_samples, )










	
ctrl_preds_

	Estimator predictions on samples when control.


	Type

	array-like, shape (n_samples, )









Example:

# import approach
from sklift.models import SoloModel
# import any estimator adheres to scikit-learn conventions
from catboost import CatBoostClassifier


sm = SoloModel(CatBoostClassifier(verbose=100, random_state=777))  # define approach
sm = sm.fit(X_train, y_train, treat_train, estimator_fit_params={{'plot': True})  # fit the model
uplift_sm = sm.predict(X_val)  # predict uplift





References

Lo, Victor. (2002). The True Lift Model - A Novel Data Mining Approach to Response Modeling
in Database Marketing. SIGKDD Explorations. 4. 78-86.


See also

Other approaches:


	ClassTransformation: Class Variable Transformation approach.


	TwoModels: Double classifier approach.




Other:


	plot_uplift_preds(): Plot histograms of treatment, control and uplift predictions.







	
fit(X, y, treatment, estimator_fit_params=None)

	Fit the model according to the given training data.

For each test example calculate predictions on new set twice: by the first and second models.
After that calculate uplift as a delta between these predictions.

Return delta of predictions for each example.


	Parameters

	
	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of
samples and n_features is the number of features.


	y (array-like, shape (n_samples,)) – Target vector relative to X.


	treatment (array-like, shape (n_samples,)) – Binary treatment vector relative to X.


	estimator_fit_params (dict, optional) – Parameters to pass to the fit method of the estimator.






	Returns

	self



	Return type

	object










	
predict(X)

	Perform uplift on samples in X.


	Parameters

	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Returns

	uplift



	Return type

	array (shape (n_samples,))

















            

          

      

      

    

  

    
      
          
            
  
sklift.models.ClassTransformation


	
class sklift.models.models.ClassTransformation(estimator)

	aka Class Variable Transformation or Revert Label approach.

Redefine target variable, which indicates that treatment make some impact on target or
did target is negative without treatment: Z = Y * W + (1 - Y)(1 - W),

where Y - target vector, W - vector of binary communication flags.

Then, Uplift ~ 2 * (Z == 1) - 1

Returns only uplift predictions.

Read more in the User Guide.


	Parameters

	estimator (estimator object implementing 'fit') – The object to use to fit the data.





Example:

# import approach
from sklift.models import ClassTransformation
# import any estimator adheres to scikit-learn conventions
from catboost import CatBoostClassifier


# define approach
ct = ClassTransformation(CatBoostClassifier(verbose=100, random_state=777))
# fit the model
ct = ct.fit(X_train, y_train, treat_train, estimator_fit_params={{'plot': True})
# predict uplift
uplift_ct = ct.predict(X_val)





References

Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data.
ICML Workshop on Clinical Data Analysis, 2012.


See also

Other approaches:


	SoloModel: Single model approach.


	TwoModels: Double classifier approach.







	
fit(X, y, treatment, estimator_fit_params=None)

	Fit the model according to the given training data.


	Parameters

	
	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples and
n_features is the number of features.


	y (array-like, shape (n_samples,)) – Target vector relative to X.


	treatment (array-like, shape (n_samples,)) – Binary treatment vector relative to X.


	estimator_fit_params (dict, optional) – Parameters to pass to the fit method of the estimator.






	Returns

	self



	Return type

	object










	
predict(X)

	Perform uplift on samples in X.


	Parameters

	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Returns

	uplift



	Return type

	array (shape (n_samples,))

















            

          

      

      

    

  

    
      
          
            
  
sklift.models.TwoModels


	
class sklift.models.models.TwoModels(estimator_trmnt, estimator_ctrl, method='vanilla')

	aka naïve approach, or difference score method, or double classifier approach.

Fit two separate models: on the treatment data and on the control data.

Read more in the User Guide.


	Parameters

	
	estimator_trmnt (estimator object implementing 'fit') – The object to use to fit the treatment data.


	estimator_ctrl (estimator object implementing 'fit') – The object to use to fit the control data.


	method (string, 'vanilla', 'ddr_control' or 'ddr_treatment', default='vanilla') – Specifies the approach:


	
	'vanilla':
	Two independent models;







	
	'ddr_control':
	Dependent data representation (First train control estimator).







	
	'ddr_treatment':
	Dependent data representation (First train treatment estimator).



















	
trmnt_preds_

	Estimator predictions on samples when treatment.


	Type

	array-like, shape (n_samples, )










	
ctrl_preds_

	Estimator predictions on samples when control.


	Type

	array-like, shape (n_samples, )









Example:

# import approach
from sklift.models import TwoModels
# import any estimator adheres to scikit-learn conventions
from catboost import CatBoostClassifier


estimator_trmnt = CatBoostClassifier(silent=True, thread_count=2, random_state=42)
estimator_ctrl = CatBoostClassifier(silent=True, thread_count=2, random_state=42)

# define approach
tm_ctrl = TwoModels(
    estimator_trmnt=estimator_trmnt,
    estimator_ctrl=estimator_ctrl,
    method='ddr_control'
)

# fit the models
tm_ctrl = tm_ctrl.fit(
    X_train, y_train, treat_train,
    estimator_trmnt_fit_params={'cat_features': cat_features},
    estimator_ctrl_fit_params={'cat_features': cat_features}
)
uplift_tm_ctrl = tm_ctrl.predict(X_val)  # predict uplift






	References
	Betlei, Artem & Diemert, Eustache & Amini, Massih-Reza. (2018).
Uplift Prediction with Dependent Feature Representation in Imbalanced Treatment and Control Conditions:
25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018,
Proceedings, Part V. 10.1007/978-3-030-04221-9_5.

Zhao, Yan & Fang, Xiao & Simchi-Levi, David. (2017).
Uplift Modeling with Multiple Treatments and General Response Types.
10.1137/1.9781611974973.66.






See also

Other approaches:


	SoloModel: Single model approach.


	ClassTransformation: Class Variable Transformation approach.




Other:


	plot_uplift_preds(): Plot histograms of treatment, control and uplift predictions.







	
fit(X, y, treatment, estimator_trmnt_fit_params=None, estimator_ctrl_fit_params=None)

	Fit the model according to the given training data.

For each test example calculate predictions on new set twice: by the first and second models.
After that calculate uplift as a delta between these predictions.

Return delta of predictions for each example.


	Parameters

	
	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number
of samples and n_features is the number of features.


	y (array-like, shape (n_samples,)) – Target vector relative to X.


	treatment (array-like, shape (n_samples,)) – Binary treatment vector relative to X.


	estimator_trmnt_fit_params (dict, optional) – Parameters to pass to the fit method
of the treatment estimator.


	estimator_ctrl_fit_params (dict, optional) – Parameters to pass to the fit method
of the control estimator.






	Returns

	self



	Return type

	object










	
predict(X)

	Perform uplift on samples in X.


	Parameters

	X (array-like, shape (n_samples, n_features)) – Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Returns

	uplift



	Return type

	array (shape (n_samples,))

















            

          

      

      

    

  

    
      
          
            
  
sklift.metrics



	sklift.metrics.uplift_at_k

	sklift.metrics.uplift_curve

	sklift.metrics.perfect_uplift_curve

	sklift.metrics.uplift_auc_score

	sklift.metrics.qini_curve

	sklift.metrics.perfect_qini_curve

	sklift.metrics.qini_auc_score

	sklift.metrics.weighted_average_uplift

	sklift.metrics.uplift_by_percentile

	sklift.metrics.response_rate_by_percentile

	sklift.metrics.treatment_balance_curve









            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.uplift_at_k


	
sklift.metrics.metrics.uplift_at_k(y_true, uplift, treatment, strategy, k=0.3)

	Compute uplift at first k observations by uplift of the total sample.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	k (float or int) – If float, should be between 0.0 and 1.0 and represent the proportion of the dataset
to include in the computation of uplift. If int, represents the absolute number of samples.


	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy.


	
	'overall':
	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':
	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated




















Changed in version 0.1.0: 	Add supporting absolute values for k parameter


	Add parameter strategy







	Returns

	Uplift score at first k observations of the total sample.



	Return type

	float






See also

uplift_auc_score(): Compute normalized Area Under the Uplift curve from prediction scores.

qini_auc_score(): Compute normalized Area Under the Qini Curve from prediction scores.











            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.uplift_curve


	
sklift.metrics.metrics.uplift_curve(y_true, uplift, treatment)

	Compute Uplift curve.

For computing the area under the Uplift Curve, see uplift_auc_score().


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])






See also

uplift_auc_score(): Compute normalized Area Under the Uplift curve from prediction scores.

perfect_uplift_curve(): Compute the perfect Uplift curve.

plot_uplift_curve(): Plot Uplift curves from predictions.

qini_curve(): Compute Qini curve.



References

Devriendt, F., Guns, T., & Verbeke, W. (2020). Learning to rank for uplift modeling. ArXiv, abs/2002.05897.









            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.perfect_uplift_curve


	
sklift.metrics.metrics.perfect_uplift_curve(y_true, treatment)

	Compute the perfect (optimum) Uplift curve.

This is a function, given points on a curve.  For computing the
area under the Uplift Curve, see uplift_auc_score().


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	treatment (1d array-like) – Treatment labels.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])






See also

uplift_curve(): Compute the area under the Qini curve.

uplift_auc_score(): Compute normalized Area Under the Uplift curve from prediction scores.

plot_uplift_curve(): Plot Uplift curves from predictions.











            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.uplift_auc_score


	
sklift.metrics.metrics.uplift_auc_score(y_true, uplift, treatment)

	Compute normalized Area Under the Uplift Curve from prediction scores.

By computing the area under the Uplift curve, the curve information is summarized in one number.
For binary outcomes the ratio of the actual uplift gains curve above the diagonal to that of
the optimum Uplift Curve.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Area Under the Uplift Curve.



	Return type

	float






See also

uplift_curve(): Compute Uplift curve.

perfect_uplift_curve(): Compute the perfect (optimum) Uplift curve.

plot_uplift_curve(): Plot Uplift curves from predictions.

qini_auc_score(): Compute normalized Area Under the Qini Curve from prediction scores.











            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.qini_curve


	
sklift.metrics.metrics.qini_curve(y_true, uplift, treatment)

	Compute Qini curve.

For computing the area under the Qini Curve, see qini_auc_score().


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])






See also

uplift_curve(): Compute the area under the Qini curve.

perfect_qini_curve(): Compute the perfect Qini curve.

plot_qini_curves(): Plot Qini curves from predictions..

uplift_curve(): Compute Uplift curve.



References

Nicholas J Radcliffe. (2007). Using control groups to target on predicted lift:
Building and assessing uplift model. Direct Marketing Analytics Journal, (3):14–21, 2007.

Devriendt, F., Guns, T., & Verbeke, W. (2020). Learning to rank for uplift modeling. ArXiv, abs/2002.05897.









            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.perfect_qini_curve


	
sklift.metrics.metrics.perfect_qini_curve(y_true, treatment, negative_effect=True)

	Compute the perfect (optimum) Qini curve.

For computing the area under the Qini Curve, see qini_auc_score().


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	treatment (1d array-like) – Treatment labels.


	negative_effect (bool) – If True, optimum Qini Curve contains the negative effects
(negative uplift because of campaign). Otherwise, optimum Qini Curve will not
contain the negative effects.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])






See also

qini_curve(): Compute Qini curve.

qini_auc_score(): Compute the area under the Qini curve.

plot_qini_curves(): Plot Qini curves from predictions..











            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.qini_auc_score


	
sklift.metrics.metrics.qini_auc_score(y_true, uplift, treatment, negative_effect=True)

	Compute normalized Area Under the Qini curve (aka Qini coefficient) from prediction scores.

By computing the area under the Qini curve, the curve information is summarized in one number.
For binary outcomes the ratio of the actual uplift gains curve above the diagonal to that of
the optimum Qini curve.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	negative_effect (bool) – If True, optimum Qini Curve contains the negative effects
(negative uplift because of campaign). Otherwise, optimum Qini Curve will not contain the negative effects.


New in version 0.2.0.










	Returns

	Qini coefficient.



	Return type

	float






See also

qini_curve(): Compute Qini curve.

perfect_qini_curve(): Compute the perfect (optimum) Qini curve.

plot_qini_curves(): Plot Qini curves from predictions..

uplift_auc_score(): Compute normalized Area Under the Uplift curve from prediction scores.



References

Nicholas J Radcliffe. (2007). Using control groups to target on predicted lift:
Building and assessing uplift model. Direct Marketing Analytics Journal, (3):14–21, 2007.









            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.weighted_average_uplift


	
sklift.metrics.metrics.weighted_average_uplift(y_true, uplift, treatment, strategy='overall', bins=10)

	Weighted average uplift.

It is an average of uplift by percentile.
Weights are sizes of the treatment group by percentile.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy. Default is ‘overall’.


	
	'overall':
	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':
	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated












	bins (int) – Determines the number of bins (and the relative percentile) in the data. Default is 10.






	Returns

	Weighted average uplift.



	Return type

	float













            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.uplift_by_percentile


	
sklift.metrics.metrics.uplift_by_percentile(y_true, uplift, treatment, strategy='overall', bins=10, std=False, total=False, string_percentiles=True)

	Compute metrics: uplift, group size, group response rate, standard deviation at each percentile.

Metrics in columns and percentiles in rows of pandas DataFrame:



	n_treatment, n_control - group sizes.


	response_rate_treatment, response_rate_control - group response rates.


	uplift - treatment response rate substract control response rate.


	std_treatment, std_control - (optional) response rates standard deviation.


	std_uplift - (optional) uplift standard deviation.








	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy. Default is ‘overall’.


	
	'overall':
	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':
	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated












	std (bool) – If True, add columns with the uplift standard deviation and the response rate standard deviation.
Default is False.


	total (bool) – If True, add the last row with the total values. Default is False.
The total uplift computes as a total response rate treatment - a total response rate control.
The total response rate is a response rate on the full data amount.


	bins (int) – Determines the number of bins (and the relative percentile) in the data. Default is 10.


	string_percentiles (bool) – type of percentiles in the index: float or string. Default is True (string).






	Returns

	DataFrame where metrics are by columns and percentiles are by rows.



	Return type

	pandas.DataFrame













            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.response_rate_by_percentile


	
sklift.metrics.metrics.response_rate_by_percentile(y_true, uplift, treatment, group, strategy='overall', bins=10)

	Compute response rate (target mean in the control or treatment group) at each percentile.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	group (string, ['treatment', 'control']) – Group type for computing response rate: treatment or control.


	
	'treatment':
	Values equal 1 in the treatment column.







	
	'control':
	Values equal 0 in the treatment column.












	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy. Default is ‘overall’.


	
	'overall':
	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':
	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated.












	bins (int) – Determines the number of bins (and relative percentile) in the data. Default is 10.






	Returns

	response rate at each percentile for control or treatment group,
variance of the response rate at each percentile,
group size at each percentile.



	Return type

	array (shape = [>2]), array (shape = [>2]), array (shape = [>2])













            

          

      

      

    

  

    
      
          
            
  
sklift.metrics.treatment_balance_curve


	
sklift.metrics.metrics.treatment_balance_curve(uplift, treatment, winsize)

	Compute the treatment balance curve: proportion of treatment group in the ordered predictions.


	Parameters

	
	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	winsize (int) – Size of the sliding window for calculating the balance between treatment and control.






	Returns

	Points on a curve.



	Return type

	array (shape = [>2]), array (shape = [>2])













            

          

      

      

    

  

    
      
          
            
  
sklift.viz



	sklift.viz.plot_uplift_preds

	sklift.viz.plot_qini_curve

	sklift.viz.plot_uplift_curve

	sklift.viz.plot_treatment_balance_curve

	sklift.viz.plot_uplift_by_percentile









            

          

      

      

    

  

    
      
          
            
  
sklift.viz.plot_uplift_preds


	
sklift.viz.base.plot_uplift_preds(trmnt_preds, ctrl_preds, log=False, bins=100)

	Plot histograms of treatment, control and uplift predictions.


	Parameters

	
	trmnt_preds (1d array-like) – Predictions for all observations if they are treatment.


	ctrl_preds (1d array-like) – Predictions for all observations if they are control.


	log (bool) – Logarithm of source samples. Default is False.


	bins (integer or sequence) – Number of histogram bins to be used. Default is 100.
If an integer is given, bins + 1 bin edges are calculated and returned.
If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin.
In this case, bins is returned unmodified. Default is 100.






	Returns

	Object that stores computed values.













            

          

      

      

    

  

    
      
          
            
  
sklift.viz.plot_qini_curve


	
sklift.viz.base.plot_qini_curve(y_true, uplift, treatment, random=True, perfect=True, negative_effect=True)

	Plot Qini curves from predictions.


	Parameters

	
	y_true (1d array-like) – Ground truth (correct) labels.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	random (bool) – Draw a random curve. Default is True.


	perfect (bool) – Draw a perfect curve. Default is True.


	negative_effect (bool) – If True, optimum Qini Curve contains the negative effects
(negative uplift because of campaign). Otherwise, optimum Qini Curve will not
contain the negative effects. Default is True.






	Returns

	Object that stores computed values.













            

          

      

      

    

  

    
      
          
            
  
sklift.viz.plot_uplift_curve


	
sklift.viz.base.plot_uplift_curve(y_true, uplift, treatment, random=True, perfect=True)

	Plot Uplift curves from predictions.


	Parameters

	
	y_true (1d array-like) – Ground truth (correct) labels.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	random (bool) – Draw a random curve. Default is True.


	perfect (bool) – Draw a perfect curve. Default is True.






	Returns

	Object that stores computed values.













            

          

      

      

    

  

    
      
          
            
  
sklift.viz.plot_treatment_balance_curve


	
sklift.viz.base.plot_treatment_balance_curve(uplift, treatment, random=True, winsize=0.1)

	Plot Treatment Balance curve.


	Parameters

	
	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	random (bool) – Draw a random curve. Default is True.


	winsize (float) – Size of the sliding window to apply. Should be between 0 and 1, extremes excluded. Default is 0.1.






	Returns

	Object that stores computed values.













            

          

      

      

    

  

    
      
          
            
  
sklift.viz.plot_uplift_by_percentile


	
sklift.viz.base.plot_uplift_by_percentile(y_true, uplift, treatment, strategy='overall', kind='line', bins=10, string_percentiles=True)

	Plot uplift score, treatment response rate and control response rate at each percentile.

Treatment response rate ia a target mean in the treatment group.
Control response rate is a target mean in the control group.
Uplift score is a difference between treatment response rate and control response rate.


	Parameters

	
	y_true (1d array-like) – Correct (true) target values.


	uplift (1d array-like) – Predicted uplift, as returned by a model.


	treatment (1d array-like) – Treatment labels.


	strategy (string, ['overall', 'by_group']) – Determines the calculating strategy. Default is ‘overall’.


	
	'overall':
	The first step is taking the first k observations of all test data ordered by uplift prediction
(overall both groups - control and treatment) and conversions in treatment and control groups
calculated only on them. Then the difference between these conversions is calculated.







	
	'by_group':
	Separately calculates conversions in top k observations in each group (control and treatment)
sorted by uplift predictions. Then the difference between these conversions is calculated.












	kind (string, ['line', 'bar']) – The type of plot to draw. Default is ‘line’.


	
	'line':
	Generates a line plot.







	
	'bar':
	Generates a traditional bar-style plot.












	bins (int) – Determines а number of bins (and the relative percentile) in the test data. Default is 10.


	string_percentiles (bool) – type of xticks: float or string to plot. Default is True (string).






	Returns

	Object that stores computed values.













            

          

      

      

    

  

    
      
          
            
  
sklift.datasets



	sklift.datasets.clear_data_dir

	sklift.datasets.get_data_dir

	sklift.datasets.fetch_lenta
	Lenta Uplift Modeling Dataset
	Data description

	Fields

	Key figures









	sklift.datasets.fetch_x5
	X5 RetailHero Uplift Modeling Dataset
	Data description

	Fields









	sklift.datasets.fetch_criteo
	Criteo Uplift Modeling Dataset
	Data description

	Fields

	Key figures









	sklift.datasets.fetch_hillstrom
	Kevin Hillstrom Dataset: MineThatData
	Data description

	Fields

















            

          

      

      

    

  

    
      
          
            
  
sklift.datasets.clear_data_dir


	
sklift.datasets.datasets.clear_data_dir(path=None)

	Delete all the content of the data home cache.


	Parameters

	path (str) – The path to scikit-uplift data dir













            

          

      

      

    

  

    
      
          
            
  
sklift.datasets.get_data_dir


	
sklift.datasets.datasets.get_data_dir()

	Return the path of the scikit-uplift data dir.

This folder is used by some large dataset loaders to avoid downloading the data several times.

By default the data dir is set to a folder named ‘scikit_learn_data’ in the user home folder.


	Returns

	The path to scikit-uplift data dir.



	Return type

	string













            

          

      

      

    

  

    
      
          
            
  
sklift.datasets.fetch_lenta


	
sklift.datasets.datasets.fetch_lenta(data_home=None, dest_subdir=None, download_if_missing=True, return_X_y_t=False)

	Load and return the Lenta dataset (classification).

An uplift modeling dataset containing data about Lenta’s customers grociery shopping and
related marketing campaigns.

Major columns:


	group (str): treatment/control group flag


	response_att (binary): target


	gender (str): customer gender


	age (float): customer age


	main_format (int): store type (1 - grociery store, 0 - superstore)




Read more in the docs.


	Parameters

	
	data_home (str) – The path to the folder where datasets are stored.


	dest_subdir (str) – The name of the folder in which the dataset is stored.


	download_if_missing (bool) – Download the data if not present. Raises an IOError if False and data is missing.


	return_X_y_t (bool) – If True, returns (data, target, treatment) instead of a Bunch object.






	Returns

	dataset.


	Bunch:
	By default dictionary-like object, with the following attributes:



	data (DataFrame object): Dataset without target and treatment.


	target (Series object): Column target by values.


	treatment (Series object): Column treatment by values.


	DESCR (str): Description of the Lenta dataset.


	feature_names (list): Names of the features.


	target_name (str): Name of the target.


	treatment_name (str): Name of the treatment.









	Tuple:
	tuple (data, target, treatment) if return_X_y is True









	Return type

	Bunch or tuple










Lenta Uplift Modeling Dataset


Data description

An uplift modeling dataset containing data about Lenta’s customers grociery shopping and related marketing campaigns.

Source: BigTarget Hackathon hosted by Lenta and Microsoft in summer 2020.




Fields

Major features:



	group (str): treatment/control group flag


	response_att (binary): target


	gender (str): customer gender


	age (float): customer age


	main_format (int): store type (1 - grociery store, 0 - superstore)













	Feature

	Description





	CardHolder

	customer id



	customer

	age



	children

	number of children



	cheque_count_[3,6,12]m_g*

	number of customer receipts collected within last 3, 6, 12 months
before campaign. g* is a product group



	crazy_purchases_cheque_count_[1,3,6,12]m

	number of customer receipts with items purchased on “crazy”
marketing campaign collected within last 1, 3, 6, 12 months before campaign



	crazy_purchases_goods_count_[6,12]m

	items amount purchased on “crazy” marketing campaign collected
within last 6, 12 months before campaign



	disc_sum_6m_g34

	discount sum for past 6 month on a 34 product group



	food_share_[15d,1m]

	food share in customer purchases for 15 days, 1 month



	gender

	customer gender



	group

	treatment/control group flag



	k_var_cheque_[15d,3m]

	average check coefficient of variation for 15 days, 3 months



	k_var_cheque_category_width_15d

	coefficient of variation of the average number of purchased
categories (2nd level of the hierarchy) in one receipt for 15 days



	k_var_cheque_group_width_15d

	coefficient of variation of the average number of purchased
groups (1st level of the hierarchy) in one receipt for 15 days



	k_var_count_per_cheque_[15d,1m,3m,6m]_g*

	unique product id (SKU) coefficient of variation for 15 days, 1, 3 ,6 months
for g* product group



	k_var_days_between_visits_[15d,1m,3m]

	coefficient of variation of the average period between visits
for 15 days, 1 month, 3 months



	k_var_disc_per_cheque_15d

	discount sum coefficient of variation for 15 days



	k_var_disc_share_[15d,1m,3m,6m,12m]_g*

	discount amount coefficient of variation for 15 days, 1 month, 3 months, 6 months, 12 months
for g* product group



	k_var_discount_depth_[15d,1m]

	discount amount coefficient of variation for 15 days, 1 month



	k_var_sku_per_cheque_15d

	number of unique product ids (SKU) coefficient of variation
for 15 days



	k_var_sku_price_12m_g*

	price coefficient of variation for 15 days, 3, 6, 12 months
for g* product group



	main_format

	store type (1 - grociery store, 0 - superstore)



	mean_discount_depth_15d

	mean discount depth for 15 days



	months_from_register

	number of months from a moment of register



	perdelta_days_between_visits_15_30d

	timdelta in percent between visits during the first half
of the month and visits during second half of the month



	promo_share_15d

	promo goods share in the customer bucket



	response_att

	binary target variable = store visit



	response_sms

	share of customer responses to previous SMS.
Response = store visit



	response_viber

	share of responses to previous Viber messages.
Response = store visit



	sale_count_[3,6,12]m_g*

	number of purchased items from the group * for 3, 6, 12 months



	sale_sum_[3,6,12]m_g*

	sum of sales from the group * for 3, 6, 12 months



	stdev_days_between_visits_15d

	coefficient of variation of the days between visits for 15 days



	stdev_discount_depth_[15d,1m]

	discount sum coefficient of variation for 15 days, 1 month









Key figures


	Format: CSV


	Size: 153M (compressed) 567M (uncompressed)


	Rows: 687 029


	Response Ratio: 0.1


	Treatment Ratio: 0.75












            

          

      

      

    

  

    
      
          
            
  
sklift.datasets.fetch_x5


	
sklift.datasets.datasets.fetch_x5(data_home=None, dest_subdir=None, download_if_missing=True)

	Load and return the X5 RetailHero dataset (classification).

The dataset contains raw retail customer purchases, raw information about products and general info about customers.

Major columns:


	treatment_flg (binary): treatment/control group flag


	target (binary): target


	customer_id (str): customer id - primary key for joining




Read more in the docs.


	Parameters

	
	data_home (str, unicode) – The path to the folder where datasets are stored.


	dest_subdir (str, unicode) – The name of the folder in which the dataset is stored.


	download_if_missing (bool) – Download the data if not present. Raises an IOError if False and data is missing






	Returns

	dataset.


Dictionary-like object, with the following attributes.



	data (Bunch object): dictionary-like object without target and treatment:



	clients (ndarray or DataFrame object): General info about clients.


	train (ndarray or DataFrame object): A subset of clients for training.


	purchases (ndarray or DataFrame object): clients’ purchase history prior to communication.









	target (Series object): Column target by values.


	treatment (Series object): Column treatment by values.


	DESCR (str): Description of the Lenta dataset.


	feature_names (Bunch object): Names of the features.


	target_name (str): Name of the target.


	treatment_name (str): Name of the treatment.














	Return type

	Bunch





References

https://ods.ai/competitions/x5-retailhero-uplift-modeling/data






X5 RetailHero Uplift Modeling Dataset

The dataset is provided by X5 Retail Group at the RetailHero hackaton hosted in winter 2019.

The dataset contains raw retail customer purchases, raw information about products and general info about customers.

Machine learning competition website [https://ods.ai/competitions/x5-retailhero-uplift-modeling/data/].


Data description

Data contains several parts:


	train.csv: a subset of clients for training. The column treatment_flg indicates if there was a communication. The column target shows if there was a purchase afterward;


	clients.csv: general info about clients;


	purchases.csv: clients’ purchase history prior to communication.







Fields


	treatment_flg (binary): information on performed communication


	target (binary): customer purchasing












            

          

      

      

    

  

    
      
          
            
  
sklift.datasets.fetch_criteo


	
sklift.datasets.datasets.fetch_criteo(target_col='visit', treatment_col='treatment', data_home=None, dest_subdir=None, download_if_missing=True, percent10=False, return_X_y_t=False)

	Load and return the Criteo Uplift Prediction Dataset (classification).

This dataset is constructed by assembling data resulting from several incrementality tests, a particular randomized
trial procedure where a random part of the population is prevented from being targeted by advertising.

Major columns:


	treatment (binary): treatment


	exposure (binary): treatment


	visit (binary): target


	conversion (binary): target


	f0, ... , f11 (float): feature values




Read more in the docs.


	Parameters

	
	target_col (string, 'visit', 'conversion' or 'all', default='visit') – Selects which column from dataset
will be target. If ‘all’, return a DataFrame with all targets cols.


	treatment_col (string,'treatment', 'exposure' or 'all', default='treatment') – Selects which column from dataset
will be treatment. If ‘all’, return a DataFrame with all treatment cols.


	data_home (string) – Specify a download and cache folder for the datasets.


	dest_subdir (string) – The name of the folder in which the dataset is stored.


	download_if_missing (bool, default=True) – If False, raise an IOError if the data is not locally available
instead of trying to download the data from the source site.


	percent10 (bool, default=False) – Whether to load only 10 percent of the data.


	return_X_y_t (bool, default=False) – If True, returns (data, target, treatment) instead of a Bunch object.






	Returns

	dataset.


	Bunch:
	By default dictionary-like object, with the following attributes:



	data (DataFrame object): Dataset without target and treatment.


	target (Series or DataFrame object): Column target by values.


	treatment (Series or DataFrame object): Column treatment by values.


	DESCR (str): Description of the Lenta dataset.


	feature_names (list): Names of the features.


	target_name (str list): Name of the target.


	treatment_name (str or list): Name of the treatment.









	Tuple:
	tuple (data, target, treatment) if return_X_y is True









	Return type

	Bunch or tuple





References

“A Large Scale Benchmark for Uplift Modeling”
Eustache Diemert, Artem Betlei, Christophe Renaudin; (Criteo AI Lab), Massih-Reza Amini (LIG, Grenoble INP)






Criteo Uplift Modeling Dataset

This is a copy of Criteo AI Lab Uplift Prediction dataset [https://ailab.criteo.com/criteo-uplift-prediction-dataset/].


Data description

This dataset is constructed by assembling data resulting from several incrementality tests, a particular randomized trial procedure where a random part of the population is prevented from being targeted by advertising.




Fields

Here is a detailed description of the fields (they are comma-separated in the file):


	f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11: feature values (dense, float)


	treatment: treatment group. Flag if a company participates in the RTB auction for a particular user (binary: 1 = treated, 0 = control)


	exposure: treatment effect, whether the user has been effectively exposed. Flag if a company wins in the RTB auction for the user (binary)


	conversion: whether a conversion occured for this user (binary, label)


	visit: whether a visit occured for this user (binary, label)







Key figures


	Format: CSV


	Size: 297M (compressed) 3,2GB (uncompressed)


	Rows: 13,979,592


	Average Visit Rate: .046992


	Average Conversion Rate: .00292


	Treatment Ratio: .85




This dataset is released along with the paper:
“A Large Scale Benchmark for Uplift Modeling”
Eustache Diemert, Artem Betlei, Christophe Renaudin; (Criteo AI Lab), Massih-Reza Amini (LIG, Grenoble INP)
This work was published in: AdKDD 2018 [https://adkdd-targetad.wixsite.com/2018/] Workshop, in conjunction with KDD 2018.









            

          

      

      

    

  

    
      
          
            
  
sklift.datasets.fetch_hillstrom


	
sklift.datasets.datasets.fetch_hillstrom(target_col='visit', data_home=None, dest_subdir=None, download_if_missing=True, return_X_y_t=False)

	Load and return Kevin Hillstrom Dataset MineThatData (classification or regression).

This dataset contains 64,000 customers who last purchased within twelve months.
The customers were involved in an e-mail test.

Major columns:


	visit (binary): target. 1/0 indicator, 1 = Customer visited website in the following two weeks.


	conversion (binary): target. 1/0 indicator, 1 = Customer purchased merchandise in the following two weeks.


	spend (float): target. Actual dollars spent in the following two weeks.


	segment (str): treatment. The e-mail campaign the customer received




Read more in the docs.


	Parameters

	
	target_col (string, 'visit' or 'conversion', 'spend' or 'all', default='visit') – Selects which column from dataset
will be target


	data_home (str) – The path to the folder where datasets are stored.


	dest_subdir (str) – The name of the folder in which the dataset is stored.


	download_if_missing (bool) – Download the data if not present. Raises an IOError if False and data is missing.


	return_X_y_t (bool, default=False) – If True, returns (data, target, treatment) instead of a Bunch object.






	Returns

	dataset.


	Bunch:
	By default dictionary-like object, with the following attributes:



	data (DataFrame object): Dataset without target and treatment.


	target (Series or DataFrame object): Column target by values.


	treatment (Series object): Column treatment by values.


	DESCR (str): Description of the Lenta dataset.


	feature_names (list): Names of the features.


	target_name (str or list): Name of the target.


	treatment_name (str): Name of the treatment.









	Tuple:
	tuple (data, target, treatment) if return_X_y is True









	Return type

	Bunch or tuple





References

https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html






Kevin Hillstrom Dataset: MineThatData


Data description

This is a copy of MineThatData E-Mail Analytics And Data Mining Challenge dataset [https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html].

This dataset contains 64,000 customers who last purchased within twelve months.
The customers were involved in an e-mail test.


	1/3 were randomly chosen to receive an e-mail campaign featuring Mens merchandise.


	1/3 were randomly chosen to receive an e-mail campaign featuring Womens merchandise.


	1/3 were randomly chosen to not receive an e-mail campaign.




During a period of two weeks following the e-mail campaign, results were tracked.
Your job is to tell the world if the Mens or Womens e-mail campaign was successful.




Fields

Historical customer attributes at your disposal include:


	Recency: Months since last purchase.


	History_Segment: Categorization of dollars spent in the past year.


	History: Actual dollar value spent in the past year.


	Mens: 1/0 indicator, 1 = customer purchased Mens merchandise in the past year.


	Womens: 1/0 indicator, 1 = customer purchased Womens merchandise in the past year.


	Zip_Code: Classifies zip code as Urban, Suburban, or Rural.


	Newbie: 1/0 indicator, 1 = New customer in the past twelve months.


	Channel: Describes the channels the customer purchased from in the past year.




Another variable describes the e-mail campaign the customer received:


	Segment



	Mens E-Mail


	Womens E-Mail


	No E-Mail











Finally, we have a series of variables describing activity in the two weeks following delivery of the e-mail campaign:


	Visit: 1/0 indicator, 1 = Customer visited website in the following two weeks.


	Conversion: 1/0 indicator, 1 = Customer purchased merchandise in the following two weeks.


	Spend: Actual dollars spent in the following two weeks.












            

          

      

      

    

  

    
      
          
            
  
Tutorials


Basic

It is better to start scikit-uplift from the basic tutorials.


The overview of the basic approaches to solving the Uplift Modeling problem [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]









	In English 🇬🇧

	[image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]



	In Russian 🇷🇺

	[image: Open In Colab2] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero.ipynb]









Uplift modeling metrics









	In English 🇬🇧

	[image: Open In Colab1] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/uplift_metrics_tutorial.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/uplift_metrics_tutorial.ipynb]









Example of usage model from sklift.models in sklearn.pipeline [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]









	In English 🇬🇧

	[image: Open In Colab3] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb]



	In Russian 🇷🇺

	[image: Open In Colab4] [https://colab.research.google.com/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb]

	nbviewer [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb]

	github [https://github.com/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_RU.ipynb]














            

          

      

      

    

  

    
      
          
            
  
Contributing to scikit-uplift

First off, thanks for taking the time to contribute! 🙌👍🎉

All development is done on GitHub: https://github.com/maks-sh/scikit-uplift.


Submitting a bug report or a feature request

We use GitHub issues to track all bugs and feature requests.
Feel free to open an issue if you have found a bug or wish to see a feature implemented at https://github.com/maks-sh/scikit-uplift/issues.




Contributing code


How to contribute

The code in the master branch should meet the current release.
So, please make a pull request to the dev branch.


	Fork the project repository [https://github.com/maks-sh/scikit-uplift].


	Clone your fork of the scikit-uplift repo from your GitHub account to your local disk:

$ git clone https://github.com/YourName/scikit-uplift
$ cd scikit-uplift







	Add the upstream remote. This saves a reference to the main scikit-uplift repository, which you can use to keep your repository synchronized with the latest changes:

$ git remote add upstream https://github.com/maks-sh/scikit-uplift.git







	Synchronize your dev branch with the upstream dev branch:

$ git checkout dev
$ git pull upstream dev







	Create a feature branch to hold your development changes:

$ git checkout -b feature/my_new_feature





and start making changes. Always use a feature branch. It’s a good practice.



	Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re done editing, add changed files using git add . and then git commit
Then push the changes to your GitHub account with:

$ git push -u origin feature/my_new_feature







	Create a pull request from your fork into dev branch.







Styleguides


Python

We follow the PEP8 style guide for Python. Docstrings follow google style [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html].




Git Commit Messages


	Use the present tense (“Add feature” not “Added feature”)


	Use the imperative mood (“Move file to…” not “Moves file to…”)


	Limit the first line to 72 characters or less


	Reference issues and pull requests liberally after the first line


	If you want to use emojis, use them at the beginning of the line.














            

          

      

      

    

  

    
      
          
            
  
Release History


Legend for changelogs


	🔥 something big that you couldn’t do before.


	💥 something that you couldn’t do before.


	📝 a miscellaneous minor improvement.


	🔨 something that previously didn’t work as documentated – or according to reasonable expectations – should now work.


	❗️ you will need to change your code to have the same effect in the future; or a feature will be removed in the future.







Version 0.3.2


sklift.datasets [https://www.uplift-modeling.com/en/v0.3.1/api/datasets/index.html]


	🔨 Fix bug in fetch_x5 [https://www.uplift-modeling.com/en/v0.3.1/api/datasets/fetch_x5.html] function by @Muhamob [https://github.com/Muhamob].







sklift.metrics [https://www.uplift-modeling.com/en/v0.3.1/api/index/metrics.html]


	📝 Fix docstring in uplift_by_percentile [https://www.uplift-modeling.com/en/v0.3.1/api/metrics/uplift_by_percentile.html] function by @ElisovaIra [https://github.com/ElisovaIra].







sklift.viz [https://www.uplift-modeling.com/en/v0.3.1/api/viz/index.html]


	🔨 Fix bug in plot_uplift_preds [https://www.uplift-modeling.com/en/v0.3.1/api/viz/plot_uplift_preds.html] function by @bwbelljr [https://github.com/bwbelljr].







Miscellaneous


	📝 Change some images in “RetailHero tutorial” [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/RetailHero_EN.ipynb].









Version 0.3.1


sklift.datasets [https://www.uplift-modeling.com/en/v0.3.1/api/datasets/index.html]


	🔨 Fix bugs in sklift.datasets [https://www.uplift-modeling.com/en/v0.3.1/api/datasets/index.html]







sklift.metrics [https://www.uplift-modeling.com/en/v0.3.1/api/index/metrics.html]


	📝 Imporve uplift_by_percentile [https://www.uplift-modeling.com/en/v0.3.1/api/metrics/uplift_by_percentile.html] function by @ElisovaIra [https://github.com/ElisovaIra].







Miscellaneous


	💥 Add tutorial “Uplift modeling metrics” [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/uplift_metrics_tutorial.ipynb] by @ElisovaIra [https://github.com/ElisovaIra].









Version 0.3.0


sklift.datasets [https://www.uplift-modeling.com/en/v0.3.0/api/datasets/index.html]


	🔥 Add sklift.datasets [https://www.uplift-modeling.com/en/v0.3.0/api/datasets/index.html]  by @ElisovaIra [https://github.com/ElisovaIra], @RobbStarkk [https://github.com/RobbStarkk], @acssar [https://github.com/acssar], @tankudo [https://github.com/tankudo], @flashlight101 [https://github.com/flashlight101], @semenova-pd [https://github.com/semenova-pd], @timfex [https://github.com/timfex]







sklift.models [https://www.uplift-modeling.com/en/v0.3.0/api/models/index.html]


	📝 Add different checkers by @ElisovaIra [https://github.com/ElisovaIra]







sklift.metrics [https://www.uplift-modeling.com/en/v0.3.0/api/metrics/index.html]


	📝 Add different checkers by @ElisovaIra [https://github.com/ElisovaIra]







sklift.viz [https://www.uplift-modeling.com/en/v0.3.0/api/viz/index.html]


	📝 Fix conflicting and duplicating default values by @denniskorablev [https://github.com/denniskorablev]







User Guide [https://www.uplift-modeling.com/en/v0.3.0/user_guide/index.html]


	📝 Fix typos









Version 0.2.0


User Guide [https://www.uplift-modeling.com/en/v0.2.0/user_guide/index.html]


	🔥 Add User Guide [https://www.uplift-modeling.com/en/v0.2.0/user_guide/index.html]







sklift.models [https://www.uplift-modeling.com/en/v0.2.0/api/models/index.html]


	💥 Add treatment interaction method to SoloModel [https://www.uplift-modeling.com/en/v0.2.0/api/models/SoloModel.html] approach by @AdiVarma27 [https://github.com/AdiVarma27].







sklift.metrics [https://www.uplift-modeling.com/en/v0.2.0/api/index/metrics.html]


	💥 Add uplift_by_percentile [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/uplift_by_percentile.html] function by @ElisovaIra [https://github.com/ElisovaIra].


	💥 Add weighted_average_uplift [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/weighted_average_uplift.html] function by @ElisovaIra [https://github.com/ElisovaIra].


	💥 Add perfect_uplift_curve [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/perfect_uplift_curve.html] function.


	💥 Add perfect_qini_curve [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/perfect_qini_curve.html] function.


	🔨 Add normalization in uplift_auc_score [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/uplift_auc_score.html] and qini_auc_score [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/qini_auc_score.html] functions.


	❗ Remove metrics auuc and auqc. In exchange for them use respectively uplift_auc_score [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/uplift_auc_score.html] and qini_auc_score [https://www.uplift-modeling.com/en/v0.2.0/api/metrics/qini_auc_score.html]







sklift.viz [https://www.uplift-modeling.com/en/v0.2.0/api/viz/index.html]


	💥 Add plot_uplift_curve [https://www.uplift-modeling.com/en/v0.2.0/api/viz/plot_uplift_curve.html] function.


	💥 Add plot_qini_curve [https://www.uplift-modeling.com/en/v0.2.0/api/viz/plot_qini_curve.html] function.


	❗ Remove plot_uplift_qini_curves.







Miscellaneous


	💥 Add contributors in main Readme and in main page of docs.


	💥 Add contributing guide [https://www.uplift-modeling.com/en/v0.2.0/contributing.html].


	💥 Add code of conduct [https://github.com/maks-sh/scikit-uplift/blob/master/.github/CODE_OF_CONDUCT].


	📝 Reformat Tutorials [https://www.uplift-modeling.com/en/v0.2.0/tutorials.html] page.


	📝 Add github buttons in docs.


	📝 Add logo compatibility with pypi.









Version 0.1.2


sklift.models [https://www.uplift-modeling.com/en/v0.1.2/api/models.html]


	🔨 Fix bugs in TwoModels [https://www.uplift-modeling.com/en/v0.1.2/api/models.html#sklift.models.models.TwoModels] for regression problem.


	📝 Minor code refactoring.







sklift.metrics [https://www.uplift-modeling.com/en/v0.1.2/api/metrics.html]


	📝 Minor code refactoring.







sklift.viz [https://www.uplift-modeling.com/en/v0.1.2/api/viz.html]


	💥 Add bar plot in plot_uplift_by_percentile [https://www.uplift-modeling.com/en/v0.1.2/api/viz.html#sklift.viz.base.plot_uplift_by_percentile] by @ElisovaIra [https://github.com/ElisovaIra].


	🔨 Fix bug in plot_uplift_by_percentile [https://www.uplift-modeling.com/en/v0.1.2/api/viz.html#sklift.viz.base.plot_uplift_by_percentile].


	📝 Minor code refactoring.









Version 0.1.1


sklift.viz [https://www.uplift-modeling.com/en/v0.1.1/api/viz.html]


	💥 Add plot_uplift_by_percentile [https://www.uplift-modeling.com/en/v0.1.1/api/viz.html#sklift.viz.base.plot_uplift_by_percentile] by @ElisovaIra [https://github.com/ElisovaIra].


	🔨 Fix bug with import plot_treatment_balance_curve [https://www.uplift-modeling.com/en/v0.1.1/api/viz.html#sklift.viz.base.plot_treatment_balance_curve].







sklift.metrics [https://www.uplift-modeling.com/en/v0.1.1/api/metrics.html]


	💥 Add response_rate_by_percentile [https://www.uplift-modeling.com/en/v0.1.1/api/viz.html#sklift.metrics.metrics.response_rate_by_percentile] by @ElisovaIra [https://github.com/ElisovaIra].


	🔨 Fix bug with import uplift_auc_score [https://www.uplift-modeling.com/en/v0.1.1/api/metrics.html#sklift.metrics.metrics.uplift_auc_score] and qini_auc_score [https://www.uplift-modeling.com/en/v0.1.1/metrics.html#sklift.metrics.metrics.qini_auc_score].


	📝 Fix typos in docstrings.







Miscellaneous


	💥 Add tutorial “Example of usage model from sklift.models in sklearn.pipeline” [https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/pipeline_usage_EN.ipynb].


	📝 Add link to Release History in main Readme.md.









Version 0.1.0


sklift.models [https://www.uplift-modeling.com/en/v0.1.0/api/models.html]


	📝 Fix typo in TwoModels [https://www.uplift-modeling.com/en/v0.1.0/api/models.html#sklift.models.models.TwoModels] docstring by @spiaz [https://github.com/spiaz].


	📝 Improve docstrings and add references to all approaches.







sklift.metrics [https://www.uplift-modeling.com/en/v0.1.0/api/metrics.html]


	💥 Add treatment_balance_curve [https://www.uplift-modeling.com/en/v0.1.0/api/metrics.html#sklift.metrics.metrics.treatment_balance_curve] by @spiaz [https://github.com/spiaz].


	❗️ The metrics auuc and auqc are now respectively renamed to uplift_auc_score [https://www.uplift-modeling.com/en/v0.1.0/api/metrics.html#sklift.metrics.metrics.uplift_auc_score] and qini_auc_score [https://www.uplift-modeling.com/en/v0.1.0/metrics.html#sklift.metrics.metrics.qini_auc_score]. So, auuc and auqc will be removed in 0.2.0.


	❗️ Add a new parameter startegy in uplift_at_k [https://www.uplift-modeling.com/en/v0.1.0/metrics.html#sklift.metrics.metrics.uplift_at_k].







sklift.viz [https://www.uplift-modeling.com/en/v0.1.0/api/viz.html]


	💥 Add plot_treatment_balance_curve [https://www.uplift-modeling.com/en/v0.1.0/api/viz.html#sklift.viz.base.plot_treatment_balance_curve] by @spiaz [https://github.com/spiaz].


	📝 fix typo in plot_uplift_qini_curves [https://www.uplift-modeling.com/en/v0.1.0/api/viz.html#sklift.viz.base.plot_uplift_qini_curves] by @spiaz [https://github.com/spiaz].







Miscellaneous


	❗️ Remove sklift.preprocess submodule.


	💥 Add compatibility of tutorials with colab and add colab buttons by @ElMaxuno [https://github.com/ElMaxuno].


	💥 Add Changelog.


	📝 Change the documentation structure. Add next pages: Tutorials [https://www.uplift-modeling.com/en/v0.1.0/tutorials.html], Release History [https://www.uplift-modeling.com/en/v0.1.0/changelog.html] and Hall of fame [https://www.uplift-modeling.com/en/v0.1.0/hall_of_fame.html].












            

          

      

      

    

  

    
      
          
            
  
Hall of Fame

Here are the links to the competitions, names of the winners and to their solutions, where scikit-uplift was used.


X5 Retail Hero: Uplift Modeling for Promotional Campaign [https://ods.ai/competitions/x5-retailhero-uplift-modeling]

Predict how much the purchase probability could increase as a result of sending an advertising SMS.


	
	Kirill Liksakov [https://github.com/kirrlix1994]
	solution [https://github.com/kirrlix1994/Retail_hero]
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